Skip to content

We use WebGPU WGSL compute shader with @antv/g-device-api. For more information: https://observablehq.com/@antv/compute-toys. So we must use ic-canvas with renderer="webgpu".

html
<ic-canvas renderer="webgpu" />

Let me briefly describe the implementation. The whole process inside compute shaders can be divided into four stages:

  • Simulate particles
  • Clear
  • Rasterize
  • Output to storage buffer
  • Blit to screen

The particle structure is really simple, it consists of 2 properties: position and velocity. We will load/store particles from/to storage textures later.

wgsl
struct Particle {
  position: float4,
  velocity: float4,
}

fn LoadParticle(pix: int2) -> Particle {
  var p: Particle;
  p.position = textureLoad(pass_in, pix, 0, 0);
  p.velocity = textureLoad(pass_in, pix, 1, 0);
  return p;
}

fn SaveParticle(pix: int2, p: Particle) {
  textureStore(pass_out, pix, 0, p.position);
  textureStore(pass_out, pix, 1, p.velocity);
}

At the first frame, we assign the initial position & velocity for each particle.

wgsl
@compute @workgroup_size(16, 16)
fn SimulateParticles(@builtin(global_invocation_id) id: uint3) {
  if (time.frame == 0u) {
    let rng = rand4();

    // Normalize from [0, 1] to [-1, 1].
    p.position = float4(2.0 * rng.xyz - 1.0, 0.0);
    p.velocity = float4(0.0, 0.0, 0.0, 0.0);
  }
}

And in each of the next frames, position will be updated with velocity.

wgsl
let dt = custom.Speed * custom.TimeStep;
p.velocity += (ForceField(p.position.xyz, t) - custom.VelocityDecay * p.velocity) * dt;
p.position += p.velocity * dt;

Released under the MIT License.